Everything about Microspheres
RSS feed
 
  • Fluorescent Microspheres Used for Experiments in Plant Canopies

    Fluorescent Microspheres - Polymer Spheres - 1g/cc

    Fluorescent Microspheres – Polymer Spheres – 1g/cc

    The University of Utah in collaboration with USDA Labs in Corvallis, OR performed five field campaigns in commercial vineyards in Oregon’s Willamette Valley.  Among the methodologies developed over the five-years experiment was the use of fluorescent microsheres as a fungal spore analog.  The microspheres used were inert fluorescing polyethylene micropsheres in four separate colors manufactured by Cospheric.

    The article attached below outlines the technology developed as well as microspheres sampling and meteorological equipment used in the experiments.  The authors of the article conclude that “these techniques have enabled for incredibly detailed research into particle plume dynamics in a vineyard.”

    NMiller_Poster_Methods

     

     

  • Particle Image Velocimetry – Particle Density and Neutral Buoyancy

    Density of particle vs. density of fluid:

    Silver Metal Coated Hollow Glass Microspheres

    Many flow visualizations are done in water but there are a variety of other liquids and even water based solutions that will have differing densities whose velocity fields are being mapped or will be in the future. Therefore, having seed particles to match these differing densities is important to provide neutral buoyancy, one of the most important factors regarding flow conformity.

    With polyethylene spheres contributing a range of densities that provide neutrally buoyant tracers for most water fluid flows thought needs to be directed towards furnishing tracers to match other densities. Gasoline and similar carbon based fluids are an example of areas of fluid flow mechanics where lower density tracer particles are necessary. Silver Coated Hollow Glass Microspheres have the density range to potentially work for many carbon chain liquids, with current densities ranging from .15 g/cc to .75 g/cc and possibly higher. This leaves some room for improvement in the densities between .75 g/cc and .96 g/cc.

    There are many options available for neutrally buoyant microspheres in water. While, other fluids may have more difficulty finding an ideal density tracer, there are options available and scientists are working to provide more unique and targeted tracer particles for use with low density fluids.

  • 12th International Symposium on Particle Image Velcoimetry

    Particle Image Velocimetry and Seeding Particles

    I recently attended the 12th International Symposium on Particle Image Velocimetry in Busan, Korea on behalf of Cospheric, a company that specializes in precision microspheres. With the hope of learning more about seeding particles involved in PIV research and what advancements in microsphere technology would benefit the work being done in flow visualization. Through conversations with many attendees I was able to gather information on some of the important factors involved in tracer particle and their ideal capabilities. An interesting addition to seeding particles brought up by several individuals was temperature sensitive spheres which could potentially provide temperature field information.

    Below is an example of neutrally buoyant microspheres which are used as flow tracers in PIV applications.

    Fluorescent Red Polyethylene Microspheres

    The venue, Haeundae Grand Hotel, was spectacular with multiple large halls available for the over 200 presentations. The surrounding city was a maze of markets and skyscrapers nestled between the mountains and coast. Wonderful weather graced us, even rivaling that of Santa Barbara. Which was not something I had considered possible. I had the pleasure and displeasure of trying many unique foods. With bibimbap from a shop near the beach and shrimp dumplings from a small business steeped in the steam used to cook their dumplings being definite highlights. While the eel which I am still unsure whether was cooked or not falling on the other side of the spectrum. I am still processing the wealth of information from ISPIV 2017 and will express my conclusions as it manages to leak from my head.

  • Use of Polyethylene Spheres for Analyzing Microplastic Transport in Correlation with Earthworm Presence

    Work by Matthias C. Rillig, Lisa Ziersch, and Stefan Hempel at Freie Universität and Brandenburg Institute of Advanced Biodiversity Research in Berlin has been published in an article titled Microplastic transport in soil by earthworms. This article investigates earthworms effect on microplastic movement into subsurface soil layers.

    Polyethylene Microplastic

    With the increase in plastic usage in recent decades the issue of how this discarded plastic will affect marine environments has been studied extensively. However, effects of microplastics on soil environments have not been tested to the same extent. Scientists have begun testing microplastic movement into lower soil layers by analyzing how differing sized polyethylene beads moved in a 21-day period with and without earthworm facilitation.

    The experiment was designed to confirm the assumption that earthworms would aid in particle movement. Results found earthworms to have a significant positive effect on transporting polyethylene particles from the soil surface. While particle size was also an important factor on the level of transportation into subsurface environments. With polyethylene spheres in the size range 710-850um being significantly more likely to move into the lowest layer when earthworms were present.

    With this experiment showing the ability of earthworms to transport microplastics into subsurface layers more research needs to be done to determine the effects this may have on the soil environment and the worms themselves. Including the multitude of other organisms that could also facilitate similar transportation. As well as the possibilities of microplastics reaching ground water where problems similar to those realized in marine systems could occur.

  • Neutrally Buoyant in Water – Microspheres with Specific Gravity of 1g/cc

    Cospheric offers polymer microspheres with specific gravity of 1g/cc are specifically designed to match the density of water for optimal suspension of particles. Suspension of microspheres in water enables the visualization and characterization of fluid flow and testing the capability of devices to withstand particulate matter in the fluid stream, ensuring that microspheres do not settle and do not float on the surface.  Most of these polymer microspheres are at least moderately opaque and clearly visible in water, clear or translucent liquids.

    Many Colors are available in sizes from 10um up to 1180um,  of polyethylene microspheres are available with specific density of 1g/cc, designed for optimum suspension in water for fluid flow visualization.  Colors include Violet, Orange, Yellow, Fluorescent, Grey, Pink, Blue, and many fluorescent colors.

    600-710um violet PE microspheres250-300um ORANGE PE Microspheresblue microspheres 355-425um Yellow microspheresGrey Microspheres PE