Deformable Conductive Bondline Spacers – Silver-Coated PMMA Microspheres

PMPMS AG 1 5 125 150um Deformable Conductive Bondline Spacers - Silver-Coated PMMA Microspheres

What are bondline spacers? Microspheres are widely used as bond line spacers because today’s technological advancements are demanding tighter and tighter tolerances.  Assembly of many instruments, especially in electronics, optics, biotechnology, calibration, and medical devices, requires holding precise spacing between parts. Depending on the requirements of the application, a rigid non-flexible bond line may be … Read more

Reflective Billboard – Creative Outdoor Billboard for McDonald’s

Bichromal (half-white half-black or any other color) Microspheres, Janus Particles

What a creative alternative to power-hungry digital displays. This large outdoor billboard is totally environmentally friendly because compared to LCD and LED displays that run on electricity, this display takes no energy to run. This creative outdoor billboard is made with reflective tape, visible only when illuminated by headlights in the darkness, created by ad … Read more

Custom Janus Particles, Microspheres, Microbeads – Bichromal Particles

Custom Janus Particles - Ceramic

What are Custom Janus Particles? Janus particle is anisotropic and refers to a particle, typically of spherical shape, with two hemispheres which may vary in color, optical properties, surface tension, electrostatic charge, magnetic response, conductivity, fluorescence, reflectivity and more. Custom Janus Particles Manufacturing Cospheric LLC uses a patented process to offer a unique capability of … Read more

Calculating microspheres per gram

During scientific experiment design and analysis it is common to need to know the number of spheres per gram of dry material. We have put together the table below to help speed up the process.

BioCompatability of Metal Coated Spheres

For those scientists?who are looking to use silver coated materials?such as silver coated microspheres in biomedical applications, it is important to understand whether they are bio-compatable.? A selection of abstracts and article references related to the biocompatability of silver follow:

The Biocompatibility of Silver2

The experiments reported have referred to some of the characteristics of the biocompatibility of Ag. Silver has been shown to display interactions with albumin, as an example of a plasma protein, quite different from those of most metals. Such studies shed further light on the complex issue of protein adsorption on biomaterials. It has also been demonstrated that Ag at concentrations < 1 ppm exerts a considerable influence on the activity of lactate dehydrogenase, this effect being reversed in the presence of albumin. A significant but transient increase in blood levels of Ag following intramuscular implantation of the metal has been observed. This is not reflected in any raised urine level. It is proposed that the richly vascular tissue immediately surrounding the implant in the acute phase of the response gives rise to the transient increase, but a subsequent decrease in vascularity reduces this possibility. It appears that Ag released from implants following this initial period substantially remains in the local area.2

Lack of toxicologocial side-effects in silver-coated megaprostheses in humans1

Deep infection of megaprostheses remains a serious complication in orthopedic tumor surgery. Furthermore, reinfection gets a raising problem in revision surgery of patients suffering from infections associated with primary endoprosthetic replacement of the knee and hip joint. These patients will need many revision surgeries and in some cases even an amputation is inevitable. Silver-coated medical devices proved their effectiveness on reducing infections, but toxic side-effects concerning some silver applications have been described as well. Our study reports about a silver-coated megaprosthesis for the first time and can exclude side-effects of silver-coated orthopedic implants in humans. The silver-levels in the blood did not exceed 56.4 parts per billion (ppb) and can be considered as non-toxic. Additionally we could exclude significant changes in liver and kidney functions measured by laboratory values. Histopathologic examination of the periprosthetic environment in two patients showed no signs of foreign body granulomas or chronic inflammation, despite distant effective silver concentrations up to 1626 ppb directly related to the prosthetic surface. In conclusion the silver-coated megaprosthesis allowed a release of silver without showing any local or systemic side-effects.1

Specific Article?References for the biocompatability of silver are below:

Read more

High Index of Refraction Retroreflective Glass Microspheres

Barium Titanate Glass Microspheres are excellent for use as a functional retro reflective additive to paints and coatings. Spheres with sizes of about 50 micron (~0.002 inches) mean diameter provide a small enough size for most coatings while offering a large enough size to reflective a significant amount of light. Barium Titanate Glass Spheres are offered in both partially aluminum coated retro-reflective version for addition into transparent coatings, or as uncoated glass spherical powder for uses in colored paints.

Microspheres in Medical Devices – MDDI Magazine

What are Microspheres?

The Microsphere of Influence

Published on MDDI Magazine
By: Yelena Lipovetskaya

Why Use Microspheres in Medical Devices?

Properties of Microspheres - Composition
Microspheres in Medical Devices

Microspheres are round microparticles that typically range from 1 to 1000 micron in diameter. Benefits of microspheres in medical devices, pharmaceuticals, and cosmetics are well known due to the microspheres’ ability to encapsulate and deliver active materials. However, there are many other lesser known advantages and functionalities of using micropsheres in medical device design, quality control, manufacturing, and testing.

The typical manufacturing process involves the microencapsulation of a drug or an active cosmetic ingredient to protect it from the deteriorating effects of the environment or for optimal release and performance in the final product. Active ingredients are released by dissolution of the capsule walls, mechanical rupture (rubbing, pressure, or impact), melting, or digestion processes. The resulting particles are often called microcapsules, which are different from solid, non-deformable microspheres.

Solid microspheres are widely used as fillers and spacers in a variety of industries. Microspheres that are used to manufacture and test medical devices are typically solid particles that are made from robust and stable raw materials such as polymers, glass, and in some cases, ceramics. Different types and grades of microspheres are available and selected based on specific application requirements.

Solid microspheres in medical devices are often used as tracers and challenge particles. In these situations, it is beneficial to use larger microspheres with sphere diameters greater than 50 micron that are vividly colored (red, blue, black, yellow, or green), since they provide contrast with the background material and visibility to the naked eye in daylight.

Colored microspheres are typically used in the testing of filtration media and systems, vial and container cleaning evaluations, flow tracing and fluid mechanics, centrifugation and sedimentation processes, pharmaceutical manufacturing, and contamination control.

Fluorescent microspheres are recommended for applications that require the use of particles that emit distinctive colors when illuminated by UV light and offer additional sensitivity for observation through the use of microscopes, lasers, and other analytical methods. Examples include microcirculation and biological research, imaging, and flow cytometry. Fluorescent microspheres can be excited and detected by a wide range of methods and are useful as experimental particles for acoustical and optical analytical systems.

Read more

Metal-Coated Microspheres – Conductive Coating

Metal-Coated Microspheres - Hollow Glass

Electrically conductive microspheres are produced by applying a metallic silver coating to the surface of the microspheres, thus giving the advantages of a metal particle with the additional properties of the core microsphere. Typically hollow glass microspheres are silver coated as this offers the combination of a low density filler and a conductive particle. Coatings with EMI shielding of greater than 45db have been produced by adding as little as 20% by weight of M-18 silver coated microspheres.