Does Particle Shape Matter? Roundness and Sphericity

Measuring Roundess of Microsparticles

Does Shape of Microparticles Matter? Particle shape plays a critical role in how the particles travel, behave, interact with each other and their environment. It also influences particle flow characteristics. Flow characteristics (ball-bearing effect) of spherical particles: Spherical shape of microparticles is often desirable because spheres and microspheres are well-known for their ball-bearing effect. They … Read more

Overview of 2019 Quality Show – Quality Management in Laboratories and Manufacturing Operations

Quality Measurement Microspheres

By Allen Licha, PMP, Cospheric LLC Last month Cospheric attended the Quality Show in Rosemont, IL. As a global supplier of precision spherical particles, striving to provide the highest quality microparticles on the market, quality is a huge part of what we do at Cospheric. Performing accurate measurements is vital to our business. Metrology, the … Read more

Reflective Billboard – Creative Outdoor Billboard for McDonald’s

Bichromal (half-white half-black or any other color) Microspheres, Janus Particles

What a creative alternative to power-hungry digital displays. This large outdoor billboard is totally environmentally friendly because compared to LCD and LED displays that run on electricity, this display takes no energy to run. This creative outdoor billboard is made with reflective tape, visible only when illuminated by headlights in the darkness, created by ad … Read more

Patent Review: Process for forming hollow glass spheres up to 5mm

A process for forming hollow glass micro-spheres with walls of controllably variable thickness in a size range of 50 to 5,000 microns, embodying (1) preparation of a water slurry of finely particulated, high temperature and low temperature glass formers; (2) prilling the slurry in a vertical spray drying tower; (3) separating and supporting the individual prilled feed material; (4) heating the feed material to glassification of the high temperature glass former while maintaining appropriate geometry and shell thickness and (5) cooling the finished product. The high temperature glass former is preferably a naturally occurring soda feldspar. The process is particularly adapted to form thicker walled micro-spheres of larger size and high quality.

Patent Review: Use of Adsorbent Carbon Microspheres for Treatment of Irritable Bowel Syndrome

One embodiment disclosed herein includes a method of treating one or more symptoms of irritable bowel syndrome by administering to the subject adsorbent carbon microspheres with a particle size of 0.01mm to about 2 mm to reduce the abdominal discomfort or pain. In one embodiment, the amount of the adsorbent carbon microspheres is sufficient to achieve at least about a 50% reduction in the number of days the subject experiences abdominal pain or discomfort.

Patent Review: Preparation of Swellable and Deformable Microspheres

United States Patent number 7,794,755 was issued on September 14, 2010, describing the process for preparation of swellable and deformable microspheres. The patent is assigned to E.I. du Pont de Nemours and cites Figuly, Mahajan, and Schiffino as inventors.

Technical Properties of PMMA Microspheres

PMMA Microspheres - Technical Specifications

In this article we will discuss the applications and technical properties of PMMA microspheres. What are PMMA Microspheres? PMMA micropsheres are also known as Poly(methyl methacrylate) or acrylic microspheres. PMMA, an ester of methacrylic acid (CH2=C[CH3]CO2H), is a synthetic resin produced from the polymerization of methyl methacrylate. Ever since PMMA resin was discovered and first … Read more

Porous Ceramics: Application for Polyethylene Microspheres

Background:

Usually porous ceramics are made from aluminum oxide, silicon carbide or Zirconia.? Most porous ceramics have a natural ability to fill pores by capillary action. This makes porous ceramics water accepting, thus they also are referred to as hydrophilic material. This means the pores and channels of a ceramic have a highly charged pore surface that attracts and bonds the polar molecules of water and other polar fluids. The net effect is called “wicking” — the ability to pull fluids into the material and transport that fluid by capillary forces.? The pore size directly affects the ceramic’s air entry or bubbling pressure and hydraulic conductivity. The effective pore size is determined by the minimum orifice within a channel or pore.1

Some porous ceramic have 40-50% open porosity with a tortuous pore structure and is available in pore sizes ranging from 0.25 to 90 microns. Monolithic, single grade, aluminum oxide porous ceramic is available in 6, 15, 30, 50, 60 and 90 micron pore sizes. In addition, some ceramic membranes can use a medium pore substrate with a thin coating of fine porous ceramic membrane in 0.25, 1, 3 and 6 micron pore sizes.2

Read more

Dual nanocomposite multihollow polymer microspheres prepared by suspension polymerization based on a multiple pickering emulsion

Excerpts from an interesting approach to creating hollow polymer microspheres from a pickering emulsion.

Abstract:

A solid-stabilized multiple w/o/w or o/w/o emulsion was prepared in a two-step process. Various nanocomposite polymer microspheres with multihollow armored closed pores were fabricated easily by suspension polymerization of the multiple Pickering stabilized emulsions.

Read more

Chitosan microspheres prepared by spray drying

Spray drying has been used in the production of fine powders from emulsions for many years, but it is not a process in which most people associate the production of microspheres.? This journal article shows how the authors were able to produce highly spherical microspheres in the 2-10um range by controlling the levels of Chitosan and crosslinking agents used.

Chitosan MicrospheresThe key items I found of interest in this article were:

The quality of the microspheres that were produced, as seen the the attached SEM micrograph.

How the process variables did not affect the zeta potential of the microspheres produced (Table 4 below), and how the size can be varied by varying the concentrations of Chitosan or the Molecular weight (MW).

Read more