Microspheres Online

Everything about microspheres and research utilizing precision spherical particles.

Microspheres in Drug Delivery Systems – 2 Essential Uses

Polystyrene Microspheres

Benefits of Microspheres in Drug Delivery There are numerous benefits of using microspheres in drug delivery due to their precise uniform dimensions, larger surface area per unit volume, as well as the ability to be surface-functioalized or loaded with active compounds and other additives. Typically microspheres in drug delivery are manufactured out of biodegradable materials … Read more

BioCompatability of Metal Coated Spheres

For those scientists?who are looking to use silver coated materials?such as silver coated microspheres in biomedical applications, it is important to understand whether they are bio-compatable.? A selection of abstracts and article references related to the biocompatability of silver follow:

The Biocompatibility of Silver2

The experiments reported have referred to some of the characteristics of the biocompatibility of Ag. Silver has been shown to display interactions with albumin, as an example of a plasma protein, quite different from those of most metals. Such studies shed further light on the complex issue of protein adsorption on biomaterials. It has also been demonstrated that Ag at concentrations < 1 ppm exerts a considerable influence on the activity of lactate dehydrogenase, this effect being reversed in the presence of albumin. A significant but transient increase in blood levels of Ag following intramuscular implantation of the metal has been observed. This is not reflected in any raised urine level. It is proposed that the richly vascular tissue immediately surrounding the implant in the acute phase of the response gives rise to the transient increase, but a subsequent decrease in vascularity reduces this possibility. It appears that Ag released from implants following this initial period substantially remains in the local area.2

Lack of toxicologocial side-effects in silver-coated megaprostheses in humans1

Deep infection of megaprostheses remains a serious complication in orthopedic tumor surgery. Furthermore, reinfection gets a raising problem in revision surgery of patients suffering from infections associated with primary endoprosthetic replacement of the knee and hip joint. These patients will need many revision surgeries and in some cases even an amputation is inevitable. Silver-coated medical devices proved their effectiveness on reducing infections, but toxic side-effects concerning some silver applications have been described as well. Our study reports about a silver-coated megaprosthesis for the first time and can exclude side-effects of silver-coated orthopedic implants in humans. The silver-levels in the blood did not exceed 56.4 parts per billion (ppb) and can be considered as non-toxic. Additionally we could exclude significant changes in liver and kidney functions measured by laboratory values. Histopathologic examination of the periprosthetic environment in two patients showed no signs of foreign body granulomas or chronic inflammation, despite distant effective silver concentrations up to 1626 ppb directly related to the prosthetic surface. In conclusion the silver-coated megaprosthesis allowed a release of silver without showing any local or systemic side-effects.1

Specific Article?References for the biocompatability of silver are below:

Read more

FDA-Approved Microspheres

What makes a microsphere FDA-approved?

In order to tell whether the microsphere can be used in cosmetics, food, or medical devices it is important to look at the raw materials that are incorporated into the microsphere during manufacturing process.? For example, unpigmented or clear polyethylene microspheres supplied by Cospheric in sizes from 10 micron to 1000 micron meet the quality requirements of the US FDA as specified in 21 CFR 172.888 and 21 CFR 178.3720.? Specific grade of polyethylene used in manufacturing of these microspheres is? FDA-approved for food applications in chewing gum base, on cheese and raw fruits and vegetables, and as a defoamer in food.

Color additives are subject to a strict system of approval under U.S. law (FD&C Act), sec. 721; 21 U.S.C. 379e. Color additive violations are a common reason for detaining imported cosmetic products offered for entry into this country. If a product contains a color additive, by law [FD&C Act, Sec. 721; 21 U.S.C. 379e; 21 CFR Parts 70 and 80] you must adhere to requirements for:

  • Approval. All color additives used in cosmetics (or any other FDA-regulated product) must be approved by FDA. There must be a regulation specifically addressing a substance’s use as a color additive, specifications, and restrictions.
  • Certification. In addition to approval, a number of color additives must be batch certified by FDA if they are to be used in cosmetics (or any other FDA-regulated product) marketed in the U.S.
  • Identity and specifications. All color additives must meet the requirements for identity and specifications stated in the Code of Federal Regulations (CFR).
  • Use and restrictions. Color additives may be used only for the intended uses stated in the regulations that pertain to them. The regulations also specify other restrictions for certain colors, such as the maximum permissible concentration in the finished product.

Read more

Microspheres: Technologies and Global Markets

An extensive market research report titled Microspheres: Technologies and Global Markets was recently published by BCC Research marketing firm. The microspheres report examines the spherical microparticles used as components in many advanced materials and composites, in the healthcare and personal care industries, and in many specialty research and development applications. The report estimates the size … Read more

Patent Review: Use of Adsorbent Carbon Microspheres for Treatment of Irritable Bowel Syndrome

One embodiment disclosed herein includes a method of treating one or more symptoms of irritable bowel syndrome by administering to the subject adsorbent carbon microspheres with a particle size of 0.01mm to about 2 mm to reduce the abdominal discomfort or pain. In one embodiment, the amount of the adsorbent carbon microspheres is sufficient to achieve at least about a 50% reduction in the number of days the subject experiences abdominal pain or discomfort.

Patent Review: Preparation of Swellable and Deformable Microspheres

United States Patent number 7,794,755 was issued on September 14, 2010, describing the process for preparation of swellable and deformable microspheres. The patent is assigned to E.I. du Pont de Nemours and cites Figuly, Mahajan, and Schiffino as inventors.

Motivations for Using Biodegradable Microspheres in Drug Delivery

In recent years there is significant interest in using biodegradable polymeric microspheres for drug delivery. Delivering drugs through biodegradable microspheres has numerous advantages compared to conventional delivery systems. While in conventional systems the drug is usually released shortly after delivery and stops working after a brief period of time, biodegradable polymer offers a way to provide sustained release over a longer time, thus eliminating the need for multiple doses and ensuring sustained and controlled drug delivery over weeks or months.

Chitosan microspheres prepared by spray drying

Spray drying has been used in the production of fine powders from emulsions for many years, but it is not a process in which most people associate the production of microspheres.? This journal article shows how the authors were able to produce highly spherical microspheres in the 2-10um range by controlling the levels of Chitosan and crosslinking agents used.

Chitosan MicrospheresThe key items I found of interest in this article were:

The quality of the microspheres that were produced, as seen the the attached SEM micrograph.

How the process variables did not affect the zeta potential of the microspheres produced (Table 4 below), and how the size can be varied by varying the concentrations of Chitosan or the Molecular weight (MW).

Read more

Chitosan Coated PLGA-Microspheres – A Modular System for Targeted Drug Delivery

During some research on PLGA microspheres we found this interesting article published in European Cells and Materials Vol 7 Suppl 2. 2004 (pages 11-12).?? They were able to achieve a significant change in the zeta potential of their microspheres just by increasing the dosage of Chitosan.?? The authors conclusions and a graph of their data follow.

Discussion and Conclusions by the authors:

The increase in zeta potential from ?70.8 mV (chitosan-free PLGA particles) to +20.5 mV with increasing chitosan concentrations in the W2-phase used for particle preparation strongly suggests that the polycationic chitosan was firmly adsorbed to the particle surface. This finding was confirmed by X-ray photoelectron spectroscopy (data not shown). The coupling of biotin via a NHS-PEGlinker showed that the amino groups of? chitosan represent suitable sites for covalent bioconjugation of different ligands. The process allows the production of particles with a mean diameter between 1 and 10 um, a useful size range for the phagocytosis by? phagocytes like dendritic cells or macrophages.

Read more

Biodegradable microspheres for vitreoretinal drug delivery

One of the microsphere topics that seems to be growing these days is biodegradability.? For those of you who are unfamiliar with the topic an excellent introductory article can be found in: Advance Drug Delivery Reviews 52 (2001) 5-16, called “Biodegradable microspheres for vitreoretinal drug delivery.”? The article does a good job describing the advantages of the various polymers available, such as poly(lactic acid) [PLA], poly(glycolic acid) [PGA], and its copolymer poly(lactic-coglycolic) acid [PLGA].

The article also recommends the prefered sterlization method for drug delivery (the authors recommend irradiation).

Read more