Everything about Microspheres
RSS feed
  • Particle Image Velocimetry – Particle Size and Distribution

    Particle size:

    Particle size is connected to many of the other parameters of seed particles in a PIV system. With size affecting visibility, flow conformity, and being integral in relation to pixel size. A rough number for ideal particle size is 1-100um though sizes in the nm and mm’s have been used for certain PIV applications. With smaller sizes being necessary for micro-PIV methods and larger sizes being a requirement for large scale flow visualization. The importance of size is related to how truly the tracer will follow the flow with particle diameter having the largest effect on stokes number, which is a representation of flow tracer fidelity. Though when particle size becomes too small it can be difficult to confirm that the tracer is not being affected by minor currents or other factors within the fluid. Also as size decreases visualizing the spheres can become quite challenging. However, the stokes number can provide a decent representation of how well particles follow the flow. Though, the stokes number is an approximation based on assumptions and therefore can only provide a useful representation rather than a confirmation of tracer fidelity.

    Particle size distribution:

    Fluorescent Red Polyethylene Tracers

    A parameter that should be considered in conjunction with particle size is distribution. As particles in the sizes used for PIV are so small that no meaningful quantity of tracers can be produced in a specific size and rather size ranges need to be considered. With tighter size distributions, there will be less error attributable to differences in visibility of particles and a better approximation of how well each particle being used will conform to the flow. For example fluorescent red polyethylene has multiple size ranges available (10-22um, 10-45um, 10-90um, and 10-150um). With tighter size distributions being more difficult to obtain and as such being more expensive. Raising the question of what the trade off between price and size distribution is. Wide distributions can be used within PIV, however they may necessitate further image processing and may reduce accuracy of measurements. Therefore, there is no perfect size distribution choice. Though, with the understanding of what is available the choice of a correct size and size distribution can be determined.

  • Particle Image Velocimetry – Intro to Tracer Particle Parameters

    PIV is a vast field with varying techniques and differing areas of research. Techniques vary from 2D PIV, only viewing velocity in a plane of the fluid system, to high speed TOMO PIV which views a 3D area of fluid and can be time resolved allowing for acceleration data to also be obtained. Another difference is that the size of liquid PIV set-ups can range from micron sized micro channels to multi thousand-gallon tanks. While the area being imaged may not vary as much as the

    Barium Sulfate Tracer for X-ray imaging

    systems themselves, it can still differ from units of micro meters to potentially meters. With viewing windows growing as new advancements in science and technology progress, the need for seed particles to match them will grow. One example of this is the rise of helium filled soap bubble seeders that provide an easily visualized 300um bubble for air systems allowing for large areas to be seeded and visualized. Or barium sulfate polyethylene microspheres which are useful due to being a radio contrast agent allowing for visualization via x-ray imaging.

    Therefore, a one solution fits all approach is not feasible when it comes to seed particle selection. As each experiment will have differing size, density, light intensity/visibility, particle material, and seeding concentration needs based on desired results.

  • 12th International Symposium on Particle Image Velcoimetry

    Particle Image Velocimetry and Seeding Particles

    I recently attended the 12th International Symposium on Particle Image Velocimetry in Busan, Korea on behalf of Cospheric, a company that specializes in precision microspheres. With the hope of learning more about seeding particles involved in PIV research and what advancements in microsphere technology would benefit the work being done in flow visualization. Through conversations with many attendees I was able to gather information on some of the important factors involved in tracer particle and their ideal capabilities. An interesting addition to seeding particles brought up by several individuals was temperature sensitive spheres which could potentially provide temperature field information.

    Below is an example of neutrally buoyant microspheres which are used as flow tracers in PIV applications.

    Fluorescent Red Polyethylene Microspheres

    The venue, Haeundae Grand Hotel, was spectacular with multiple large halls available for the over 200 presentations. The surrounding city was a maze of markets and skyscrapers nestled between the mountains and coast. Wonderful weather graced us, even rivaling that of Santa Barbara. Which was not something I had considered possible. I had the pleasure and displeasure of trying many unique foods. With bibimbap from a shop near the beach and shrimp dumplings from a small business steeped in the steam used to cook their dumplings being definite highlights. While the eel which I am still unsure whether was cooked or not falling on the other side of the spectrum. I am still processing the wealth of information from ISPIV 2017 and will express my conclusions as it manages to leak from my head.

  • PIV Seeding – Microparticle Recommendations

    Flow Visualization can best be accomplished with colored or fluorescent tracing particles of the same density as the fluid being studied.Particle image velocimetry (PIV) is the term used for imaging the fluid flow using colored tracer particles.  Through high speed particle imaging the velocity of the particles can be obtained and mapped.

    Photo Courtesy of Wiki-CommonsFor PIV experiments in water there are a wide variety of 1g/ml microspheres available as seeding particles, Cospheric offers polyethylene seeding particles in a variety of colors (fluorescent and non-fluorescent) and sizes from 10-20um, on up to 1mm.

    Particle size selection is important to ensure that observations can be accurately made.  For imaging systems without any magnification or unaided human observation it is recommended to use micro-spheres that are larger than 200um.   Human eyes can resolve features down to about 75um, at 200um+ the particles will be large enough to be discernible.

    Correctly seeding the system is also important.  For most applications loadings of 0.1-0.3% are sufficient.  This is the equivalent of about 1 gram of particles per gallon of fluid in systems of 10-50 gallons (40-200 liters) .  Exact loading levels will depend on the individual experiment requirements.

    For aqueous systems, polyethylene micro-particles will require a surfactant to wet properly.  For general flow studies pre-wetting the PE microspheres with Simple Green concentrated cleaner works well.  For biological systems a bio-compatable surfactant such as Tween 20 or Tween 80 is recommended.

    Seeding particle color selection is important to ensure that sufficient contrast is achieved during testing.  Very bright fluorescent micro-particles are available in densities of 1g/cc  these offer not only bright testing under daylight conditions, but also the option of illumination with lasers or uv lights for increased system contrast.

    The recommended PIV seeding particles are available from Cospheric.

    For green lasers (530nm)  we recommend UVPMS-BR
    For dark backgrounds: UVPMS-BY, UVPMS-BG, BLPMS, ORGPMS, BSPMS, or WPMS
    For light backgrounds: GRYPMS, VIOPMS, UVPMS-BR, UVPMS-BO